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Abstract. Since discovery of fully homomorphic encryption by Gentry in 2009, interest of lattice-based cryp-

tography has significantly increased. Several researches have improved the efficiency of homomorphic encryption

(HE) schemes. Despite all those powerful results, huge computational cost of underlying operations limits feasi-

bility of practical implementations. In order to avoid computations over large numbers, residue number system

arithmetic was included into HE cryptosystems scheme. In this paper, residue number system (RNS) and its

representation were introduced and applications of RNS representation in some homomorphic encryptions was

presented and some of them are analyzed extensively. This paper aims to present a brief summary of RNS variants

of some homomorphic encryptions.
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1 Introduction

In cryptography, there are many computations over huge numbers, but residue number sys-
tem (RNS) is supplied with efficient arithmetic. That is why, cryptography is interested in
RNS’s implementations on some cryptosystems. There are some cryptosystems based on RNS
(Chervjakov et al., 2015).

Homomorphic encryptions are able to do computations on encrypted data without decryp-
tion. Gentry (2009) offered fully homomorphic encryptions (FHE) based on ideal lattices. FHE
is divided into two categories (Babenko & Trepacheva, 2019). First category includes cryptosys-
tems based on Gentry’s method. Second category includes cryptosystems based on different
mathematical objects, like matrix, polynomial based and finally, RNS based cryptosystems.

The technology of homomorphic encryptions has improved rapidly in a few years. Various
HE schemes was offered and have become more practical. The RNS implemented in some
cryptosystems such as RSA, ECC (Elliptic Curve Cryptography), pairings etc., more recently,
it has been used to accelerate fully homomorphic encryptions as lattice-based cryptography
(Bajard et al., 2015). These implementations focused on arithmetic operations in RNS, using
Chinese Remainder Theorem (CRT) to represent and manipulate the large coefficients in the
ciphertext polynomials.

2 The Residue Number System

The RNS is considered an alternative to a binary representation of numbers. A number is
represented as a set of remainders (residues) of dividing that number by some moduli. Let’s
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take a natural number m and call it module. The remainders of division of an arbitrary number
by m = 6, are {0,1,2,3,4,5}. It can be collected all natural numbers under the six groups
according to the remainder obtained by dividing of all natural numbers by 6:

an = 6n− 5,

an = 6n− 4,

an = 6n− 3,

an = 6n− 2,

an = 6n− 1,

an = 6 (n− 1) , n ∈ N+

For the module m, there is m residue classes. Because remainders of the division of all
natural numbers by m are the elements of the set {0, 1, . . . ,m− 2,m− 1}.

In residue number system, decimal numbers A10 are shown like below:

A10 = (a1a2 . . . ak)RNS

Here,

ai = A−
⌊
A

pi

⌋
· pi, i = 1, 2, . . . , k.⌊

A
pi

⌋
shows the whole part of the division, pi shows the different bases and are prime numbers.

2.1 The RNS Representation

Let B={p0, . . . ,pk−1} be a basis and let P=
∏k−1

i=0 pi. We represent by [·]B the map from ZP to∏k−1
i=0 Zpi , defined by a 7−→ [a]B = ([a]pi)0≤i<k

. It is a ring isomorphism from the CRT and [a]B
is called the residue number system (RNS) representation of a ∈ ZP . The reverse representation
is the important part of arithmetic in RNS (Isupov, 2021). The classical method of searching
for the whole value of the number by residue numbers is got from constructive proof of CRT
(Knuth, 1997).

a =

(
k−1∑
i=0

[a(i) · p̂−1i ]p · p̂j

)
P

p̂i =
∏
i′ 6=i

pi′ ∈ Z.

2.2 Fast Basis Conversion

For a basis {p0, . . . , pk−1, q0, . . . ql−1}, B={p0, . . . ,pk−1} and C={q0, . . . ,ql−1} are its subbases.
Their product will be denoted by, respectively P =

∏k−1
i=0 pi and Q =

∏l−1
j=0 qj . Then one can

convert the RNS representation [a]C =
(
a(0), . . . , a(l−1)

)
∈ Zq0 . . .Zql−1

of an integer a ∈ ZQ into
an element of Zp0 . . .Zpk−1

by computing

ConvC 7→B ([a]C) =

 l−1∑
j=0

[a(j) · q̂−1j ]
qj
· q̂j (mod pi)


0≤i<k

,

where q̂j =
∏

j′ 6=j qj′ ∈ Z.
∑l−1

j=0 [a(j) · q̂−1j ]
qj
· q̂j (mod pi) = a + Q · e. Here ConvC 7→B ([a]C) is

the RNS representation of a+Q · e with respect to the basis B (Cheon et al., 2018).
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2.3 Approximate Modulus Raising

For the basis B={p0, . . . ,pk−1}, C={q0, . . . ,ql−1} and D {p0, . . . , pk−1, q0, . . . ql−1},
Algorithm 1.

1: procedure ModUpC 7→D(a(0), a(1), . . . , a(l−1))

2: (ã(0), . . . , ã(k−1))←a ConvC 7→B ([a]C) .

3: return (ã(0), . . . , ã(k−1), a(0), . . . , a(l−1))

4: end procedure.

2.4 Approximate Modulus Reduction

The aim of approximate modulus reduction is reduced to a problem of finding small ã = b̃−P ·b
satisfying ã ≡ b̃ (mod P ).

Algorithm 2.

1: procedure ModDownD 7→C(b̃(0), . . . , b̃(k+l−1))

2: (ã(0), . . . , ã(l−1))← ConvB 7→C

(
b̃(0), . . . , b̃(k−1)

)
3: for 0 ≤ j < l do

4: b(j) = (
∏k−1

i=0 pi)
−1 ·

(
b̃(k+j) − ãj

)
(mod qj) .

5: end for

6: return
(
b(0), . . . , b(l−1)

)
.

7: end procedure

3 RNS in Cryptosystems

There are many implementations of RNS in encryption schemes. Some of them are analyzed
through the paper.

3.1 A Full RNS Representation of RSA

There are many variants of RNS implementation of RSA (Fadulilahi et al., 2015; Jain, 2017;
Manochehri et al., 2010; Nozako et al., 2001). First RNS implementation of RSA is presented
by Impert and Bajard (2004), which doesn’t require any conversion. The message is directly
considered as a value represented in RNS and all operations is computed within the system.

3.2 A Full RNS Representation of FV like Somewhat HE Schemes

The RNS implementation of FV focused on CRT representation applied to the large coefficients,
proposed by Bajard et al. (2016). This work offers a way to reduce the need for multi-precision
arithmetic and suggests techniques to enable a full RNS variant of the FV-like schemes (Fan &
Vercauteren, 2012).

3.3 A Full RNS Representation Variant of the BGV (Brakerski-Gentry-
Vaikuntanathan)

BGV is a leveled FHE scheme which introduces a new parameter L. BGV algorithm introduces
several additional parameters and functions beyond Basic LWE and RLWE algorithms (Brak-
erski et al., 2012). Gentry, Halevi and Smart (2015) presented in their work a different variant
of the Brakerski-Vaikuntanathan key-switching technique that doesn’t require eliminating the
norm of the ciphertext vector, and a method of applying the Brakerski-Gentry-Vaikuntanathan
modulus switching transformation on chiphertexts in CRT representation.

Implementing RNS in BFV (Brakerski-Fan-Vercauteren) seems harder than BGV. One dif-
ference is that in BGV numbers are typically scaled by just single-precision factors, while in
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BFV these factors are often big, of order similar to the multi-precision modulus q. Another
difference is that features more of these scaling operations than BGV (Halevi et al., 2018).

3.4 A Full RNS Representation of the BFV

Plaintext space in BFV is Zt for some modulus t > 1, where secret keys and chiphertexts are
dimension-n vectors over Zn

q for some other modulus q � t (Halevi et al., 2018).
KeyGen. For the secret key, s← χkey and sk : − (1, s) ∈ R2. For the public encryption key

set (a(0), . . . , a(L))←− U(
∏L

j=0Rqj ) and e←− χerr. Set the public key as

pk ←−
(
pk(j) =

(
b(j), a(j)

))
∈ R2

qj , 0 ≤ j ≤ L.

where b(j) ←− −a(j) · s+ e ( mod qj) for 0 ≤ j ≤ L.

For relinearization, set a uniform αj ∈ Rq and ej ← χerr and βj =
[
qjq
∗
j s

2 −∝js+ ej

]
q

for

each j = 1, 2, . . . , k.
Encpk(m). For m ∈ Rt, sample v ←− χenc and e0, e1 ←− χerr. Output the ciphertext

ct = (ct(j))0≤j≤L ∈
∏L

j=0R
2
qj ), where ct(j) ← v ·pk(j)+(e0, e1)+(4m, 0) (mod qj) for 0 ≤ j ≤ L,

where 4 = q
t .

Decsk(ct). For ct = (ct(j) = (c
(j)
0 , c

(j)
1 ))0≤j≤L, output

〈
ct(0), sk

〉
(mod q0)=

[
c
(0)
0 + c

(0)
1 s
]
q0

=

x, m := [dx · t/qc ]t.
Add(ct, ct′). ct =

(
ct(j) = (c

(j)
0 , c

(j)
1 )
)
0≤j≤l

and ct′ =
(
ct′(j) = (c

′(j)
0 , c

′(j)
1

)
0≤j≤l

are given two

ciphertexts. ctadd =
(
ct(j) + ct

′′(j)
)
0≤j<l

= (c
(j)
0 + c

′(j)
0 , c

(j)
1 + c

′(j)
1 )0≤j<l.

Multevk(ct, ct′). ct =
(
ct(j) = (c

(j)
0 , c

(j)
1

)
0≤j≤l

and ct′ =
(
ct′(j) = (c

′(j)
0 , c

′(j)
1

)
0≤j≤l

are given

two ciphertexts. Output ctmult = (c̈
(j)
0 , c̈

(j)
1 ) ∈ R2

qj for j = 0, . . . , l. The process begins by
extending the CRT basis. This gives us a representation of each coefficient in cxy , in the larger ring
Zqp, which in turns yields a representation of the cxy

′s in the larger ring Rqp. Next we compute

the three elements ċ
(j+i)
0 = c

(j+i)
0 c

′(j+i)
0 , ċ

(j+i)
1 = c

(j+i)
0 c

′(j+i)
1 +c

(j+i)
1 c

′(j+i)
0 , ċ

(j+i)
2 = c

(j+i)
1 c

′(j+i)
1 ,for

j = 0, . . . , l − 1 and i = 0, . . . , k − 1, where all the operations are in the ring Rqp. Then the
procedure of scaling back to Rq begins and it gives the power- basis representation of the

elements c
∗(j)
m =

[
dt/q ċ(j)m

⌋]
q
∈ Rq for m = 0, 1, 2 and j = 0, . . . , l. For relinearization for each

qj , c̃
(j)
0 =

[∑l
i=0 [βi]qj · c

∗(i)
2

]
qj

and c̃
(j)
1 =

[∑l
i=0 [∝i]qj · c

∗(i)
2

]
qj

and then c̈
(j)
0 =

[
c
∗(j)
0 + c̃

(j)
0

]
qj

and c̈
(j)
1 =

[
c
∗(j)
1 + c̃

(j)
1

]
qj

.

3.5 A Full RNS Representation Variant of the Approximate HE

HE for arithmetic of approximate numbers (HEAAN) supports an approximate addition and
multiplication of encrypted data, together with a new rescaling procedure for managing the
magnitude of plaintext. The name of the algorithm is changed by the authors to the CKKS
algorithm (Ozdemir & Koc, 2022). The CKKS scheme works in the ring of polynomials with
the integer coefficients modulo mth cyclomotic polynomial φm(x) that is R = Z [x] /(φm(x))
(Cheon et al., 2017).

The RNS variant of CKKS is introduced by Cheon et al. (2018) and later several newer and
better RNS variants are presented (Bossuat et al., 2021; Chen et al., 2019; Han & Ki, 2020; Lee
et al., 2020). In this paper, the RNS variant offered by Cheon et al. (2018) is presented.

KSGen (s1, s2) . For given secret polynomials s1, s2 ∈ R, sample uniform elements
(a′(0), . . . , a′(k+L))←− U(

∏k−1
i=0 Rpi ×

∏L
j=0Rqj ) and an error e′ ←− χerr. Output the switching

key swk as
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(swk(0) =
(
b′(0), a′(0)

)
, . . . , swk(k+L) = (b′(k+L), a′(k+L))) ∈

k−1∏
i=0

R2
pi ×

L∏
j=0

R2
qj

where b′(i) ←− −a′(i) · s2 + e′( mod pi) for 0 ≤ i < k and b′(k+j) ←− −a′(k+j) · s2 + [P ]qj · s1 +

e′ ( mod qj) for 0 ≤ j ≤ L.
KeyGen.

1. Sample s←− χkey and set the secret key as sk ←− (1, s).

2. Sample (a(0), . . . , a(L))←− U(
∏L

j=0Rqj ) and e←− χerr. Set the public key as

pk ←−
(
pk(j) =

(
b(j), a(j)

))
∈ R2

qj , 0 ≤ j ≤ L.

where b(j) ←− −a(j) · s+ e ( mod qj) for 0 ≤ j ≤ L.

3. Set the evaluation key as evk ←− KSGen
(
s2, s

)
.

Encpk (m) . For m ∈ R, sample v ←− χenc and e0, e1 ←− χerr. Output the ciphertext

ct = (ct(j))0≤j≤L ∈
∏L

j=0R
2
qj ), where ct(j) ← v · pk(j) + (m+ e0, e1) (mod qj) for 0 ≤ j ≤ L.

Decsk(ct). For ct = (ct(j))0≤j≤l, output
〈
ct(0), sk

〉
(mod q0).

Add(ct, ct′). ct =
(
ct(j)

)
0≤j≤l ∈

∏l
j=0R

2
qj , ct

′ =
(
ct′(j)

)
0≤j≤l ∈

∏l
j=0R

2
qj are given cipher-

texts, output a ciphertext ctadd = (ct
(j)
add)

0≤j≤l = (ct(j) + ct′(j))0≤j≤l (mod qj) .

Multevk(ct, ct′). ct =
(
ct(j) = (c

(j)
0 , c

(j)
1

)
0≤j≤l

and ct′ =
(
ct′(j) = (c

′(j)
0 , c

′(j)
1

)
0≤j≤l

are given

two ciphertexts. Output ctmult ∈
∏l

j=0R
2
qj .

1. For 0 ≤ j ≤ l, compute

d
(j)
0 ← (c

(j)
0 c
′(j)
0 ) (mod qj) ,

d
(j)
1 ← (c

(j)
0 c
′(j)
1 + c

(j)
1 c

′(j)
0 ) (mod qj) ,

d
(j)
2 ← (c

(j)
1 c

′(j)
1 ) (mod qj) .

2. Compute ModUpCl←Dl

(
d
(0)
2 , . . . , d

(l)
2

)
=
(
d̃
(0)
2 , . . . , ď

(k−1)
2 , d

(0)
2 , . . . , d

(l)
2

)
.

3. Compute

c̃t =
(
c̃t

(0)
=
(
c̃
(0)
0 , c̃

(0)
1

)
, . . . , c̃t

(k+l)
=
(
c̃
(k+l)
0 , c̃

(k+l)
1

))
∈

k−1∏
i=0

R2
pi ×

l∏
j=0

R2
qj

where c̃t
(i)

= d̃
(i)
2 · evk

(i) (mod pi) and c̃t
(k+j)

= d̃
(j)
2 · evk

(k+j) (mod qj) for0 ≤ i < k, 0 ≤ j ≤ l.

1. Compute (
ĉ
(0)
0 , . . . , ĉ

(l)
0

)
←ModDownDl→Cl

(
c̃
(0)
0 , . . . , c̃

(k+l)
0

)
,

(
ĉ
(0)
1 , . . . , ĉ

(l)
1

)
←ModDownDl→Cl

(
c̃
(0)
1 , . . . , c̃

(k+l)
1

)
.
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2. Output the ciphertext ctmult = (ct
(j)
mult)0≤j≤l where ct

(j)
mult ←

(
ĉ
(j)
0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1

)
(mod qj)

for 0 ≤ j ≤ l.
RS (ct).

For a level l ciphertext ct = (ct(j) = (c
(j)
0 , c

(j)
1 ) for 0 ≤ j ≤ l and ct ∈

∏l
j=0R

2
qj . Compute

c
′(j)
i ← q−1l ·

(
c
(j)
i − c

(l)
i

)
( mod qj) for i = 0, 1 and for 0 ≤ j < l. Output the ciphertext

ct′ ← (ct′(j) = (c
′(j)
0 , c

(j)
1 ))0≤j≤l−1 ∈

∏l−1
j=0R

2
qj .

For detailed information see Cheon et al. (2018).

4 Conclusion

This paper provided a brief look over RNS representation of some homomorphic operations.
These implementations expresses message as number in RNS and using reverse formula of con-
version from RNS into radix base, performs base extensions and base reductions. Thus, RNS
gives a chance to work with small numbers and it concludes faster homomorphic operations
in homomorphic encryptions. For example, the performance of basic operations was improved
by the RNS implementation approximately 10 times compared to the original CKKS (Cheon
et al., 2018). The newer RNS variants of CKKS has better performances. As the interest in
cryptography continues, new methods will always be developed and better variants will emerge.
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